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The initiation and propagation of reaction diffusion travelling waves in a model
product-feedback autocatalator kinetic scheme, for which the well-stirred (spatially
homogeneous) case has been considered previously in detail, in discussed. 4 priori
bounds and general properties are obtained for the initial-value problem. These are
extended by numerical solutions of the initial-value problem in the three, previously
identified expanding, contracting and reduced cases. In the reduced case, the
concentrations attained at the rear of the wave are seen to depend on the existence
and temporal stability of a non-trivial steady state of the system. In the contracting
case, a constant non-zero value is achieved by the concentration of reactant A, while
the concentrations of autocatalyst B and reactant C are pulse-like and tend to zero
at long times. In the expanding case, a propagating wave front is seen, but now the
concentrations behind the wave can grow in time. The permanent form travelling
wave equations are then treated. General properties of their solutions are obtained
and asymptotic solutions, valid for large initial concentrations of reactant A, are
derived in all three cases.
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390 S. M. Collier, J. H. Merkin and S. K. Scott

1. Introduction

In a recent paper (part I, Collier et al. (1992) we considered a modified version of the
C-feedback autocatalator of Peng ef al. (1990), namely the reaction scheme

P+C—A+C, rate=k,p,c, (la)
A+2B— 3B, rate = k, ab?, (1b)
B—-C, rate =k, b, (1c)
C—-D, rate =k,c, (1d)

where a, b and ¢ are the concentrations of the reactants A, B and C respectively, p,
is the (constant) concentration of the precursor P and the k; are the rate constants.

Previously, we considered the well-stirred model in some detail. However, our
main aim is to treat scheme (1) in the reaction-diffusion context. We have already
identified the need to have a thorough understanding of the well-stirred system
before undertaking a discussion of the reaction-diffusion model (Merkin & Needham
1990; Needham & Merkin 1991), and this was dealt with in part I. We are now in a
position to treat this case, the dimensionless equations for which are, from part I, for
planar geometry

ox 0%

a=w+//&2—xy2, (2(1)
§) 0?

R eRk (25)
0z 02

P —ar‘z+y—yz, (2¢)

subject to the initial and boundary conditions

x = x,
r), <o,

y={3(/)°g() :r:>a at £=0, (3a)

z2=0,

x—x, y—0, z—0 as |r|—> o0, (3b)

where x,,y,, 4 = kypo/k, and y = k,/k, are constants, and where x, y and z are the
dimensionless concentrations of the reactants A, B and C respectively. g(r) is a
positive continuous function of » on |r| < o with a maximum value of unity.

In the well-stirred case (part I) we identified three distinct cases, depending on the
sign of u—v, which we referred to as

(@) 4 >7y the ‘expanding’ case,
() # <7y the ‘contracting’ case,
(€) p =7 the ‘reduced’ case.

In the reduced case we found the possibility of multiple stationary states with
saddle-node and Hopf bifurcations (both supercritical and subecritical). The limit
cycles formed at the Hopf bifurcations were seen to break up at homoclinic orbit

Phil. Trans. R. Soc. Lond. A (1994)
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The initiation and propagation of travelling waves 391

bifurcations. For the other two cases, there was only one possible stationary state,
namely the trivial state x = x,, ¥y = z = 0 which was shown to be a stable node for all
parameter values. In the ‘contracting’ case this stationary state was approached for
large time (with the value of ; depending on the initial conditions as well as on the
parameters x4 and ). However, for the ‘expanding’ case the solution grew in time,
in the sense that the total concentration x+y+z—>00 as t—>00. Finite periods of
oscillatory behaviour were found in both cases, particularly when |x—vy| was small
and these could be identified in terms of known behaviour in the reduced case.

We start the discussion of the corresponding reaction-diffusion case by obtaining
some general properties of the initial-value problem.

2. General properties of the initial-value problem
(@) Special case p =0
This case has, in effect, already been discussed fully by Merkin & Needham (1990)
and to obtain the equations treated in that paper we put
x=2,F Y=x,y, z2=u,% F=a,r, {=2adt.
Equations (2) then become (with g = 0)

ox 0%

XYL _ e
a ok (4a)
y_ Py, _, 1 _

6?——8?2+xy x—%y (4d)

(The equation for Z becomes uncoupled from the equations for Z and 7 and need not
be considered.) The initial and boundary conditions are

g=1, 7=L9r at t=0,
“ (4)
z—1, 7—0 as |[f— o0.
From Merkin and Needham we know that this system can develop propagating
reaction—diffusion waves only if 1/2} < v, ~ 0.0465, i.e. only if #; > 4.64. Also, from
result I8 in Merkin and Needham, we have a lower bound on y, for these waves to
be formed, namely that y, > ;.

(b) A priori bounds
It is relatively straightforward to show, using the corollary to theorem 14.7 in
Smoller (1983) and the discussion following this, that
{x,y,22220,y 20,220} (5)

is an invariant set for the system (2), (3).
By adding equations (2) we have that the total concentration § = x+ y+ 2 satisfies
the equation

0 0?
5§—= a7‘§+(,u—y)z. (6a)

It then follows, using (5) and the scalar maximum principle for parabolic operators
Phil. Trans. R. Soc. Lond. A (1994)
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392 S. M. Collier, J. H. Merkin and S. K. Scott

(see, for example, Fife 1979) that, for the contracting and reduced cases, i.e.

u=y <0,
0<é{<a+y, t=20,—00<r<oo. (60)

Then, again from (5) we have that
{,9,2:020,9y20,220,0< x+y+z< 2, +y,} (6¢)

and is an invariant set for the system (2), (3) when g —v < 0. The existence of the a
priori bound given by the bounded invariant set (6¢) then guarantees the global
existence and uniqueness of the solution in this case (Smoller 1983).

As would be expected from the well-stirred system, the expanding case, u > vy,
appears not to be bounded above. However, we can get an estimate for the growth
rate of the total concentration &, if we consider the linear parabolic operator

Lyl =4, =V —(u—p) . (Ta)
Now L[§]=—(p—y)(x+y) <0 from (6¢), while, for the function wu()=
(x,+y,) e* ' Llu] = 0. Also,
£(r,0) = 2, +y,9(r) < 2y +y, = u(0).
Hence by the scalar comparison theorem for parabolic operators (Britton 1986)
E(r,t) < (2, +y,) ¥, —o0 <r<oo, t=0. (7b)

This gives an upper bound in the growth rate of the total concentration £.
Then, via (5) and since x, ¥ and z are all individually less than £,

(x,y,2) < (2, +y,) ¥, —o0<r<o, t=0. (7c)

For (u—1v) > 0 (7¢) gives an upper bound on the growth rate in the concentrations
of the individual species A, B and C.
Furthermore, if we put v = 2, —§, then
0=V = —(u—y)z <0 (8a)

on —o0 <r<o0, t=0 for (u—7)> 0. Hence, again by the maximum principle,
v < 0 giving

x+y+z=wx, for —o0<r<oo, t=0. (8d)
Combining results (75) and (8b) we obtain the bound
x; < &< (2 +y,) ¥ (8¢)

for t >0, —o0 <r <o when (u—7y) > 0.
Next we return to the case (#—7) < 0 and consider the operator

Mp] =, =V + i — (2, +y,) Y. 9a)

Now M[y] = (x— (2, +y,)) y* < 0 (from (6¢)) and, with
= o g (9b)
(@1 +Yo) Yo+ [1— (2 +Yo) Yol ©

M[w] = 0. Also, y(r,0) = y,9(r) < y, = w(0). Then, again by the scalar comparison
theorem,

Yo
(1 + o) Yo+ [1— (2, +yo) Yol €
Phil. Trans. R. Soc. Lond. A (1994)
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The initeation and propagation of travelling waves 393

Equation (9¢) shows that, if (x;+y,) ¥, <1, ¥y >0 uniformly in » as {— oo, and
hence a necessary condition for the initiation of a travelling wave when p—vy < 0 is
that

zy Z (L= y3)/Yo- (10)

Clearly, for positive values of the parameters, this gives no restriction on x, for
Yo > 1 and for z, large and y, small gives x; > y;*.

We can gain further insight into the conditions under which reaction—diffusion

travelling waves are initiated by considering the solution for y, small, which is what
we do next.

(c) Solution for y, small
First assume that x, is O(1), then to obtain a solution valid for y, < 1, we put

v=x+y, X, y=y,Y, z=y,Z. (11)
At leading order, equation (2b) becomes

oy _av_

% e Y, (12a)

which has the solution satisfying the initial and boundary conditions derived from (3)

Y(r,t) = 2;_(nt) LO 7(s) e~ e~ ds, (12b)

where g(s) = f g(r) es dr

is the Fourier transform of g(r). For ¢ > 1, (12b) gives

et _ i —r¥/at
Expression (12¢) shows that Y(r,¢) -0 uniformly in » as ¢ >o0.

A consideration of the equations for X and Z then shows that X is of O(t7/2), and
that Z is of O(e™*) for y > 1, of O(t ™) for vy = 1 and of O(e™") for v < 1, uniformly
in r as t >00. Hence no waves can be initiated in this case with the system returning
uniformly to its unreacted state. This analysis suggests that, for x, of O(1), there will
be some threshold value of ¥y, %, min (say), below which travelling waves will not
develop for any value of ;.

Next consider the case x, large. Inequality (10) suggests that the above conclusion
could be modified when , is of O(y,*) and to discuss this case we put Z, = , y,, with
z; of O(1) for y, € 1. We still use the scaling as given by (11), and it is again the
equation for Y which is the important one. This is now, at leading order,

oYy 0%y

—5{=W+E?Y2_Y (13a)

to be solved subject to initial and boundary conditions
Y={g(”’ M<o 0t 120, Y>0 as |- 0. (13b)

0, [r] > o,
Phil. Trans. R. Soc. Lond. A (1994)
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394 S. M. Collier, J. H. Merkin and S. K. Scott

To discuss equation (13) we start by considering the linear operator L,[y] =

Y— ¥, +¢. Then
L[0]=0< L,[Y] = 7 Y (14a)

Hence, by the strong comparison theorem for scalar parabolic operators,
Y(r,t)y >0 on —oo<r<oo, t>0. (140)

Next we consider the operator N[y] = y,—,,—Z; *+ and the function Y(t) =
[#,+(1—27,) e']7". Then N[¥] =0 = N[Y] and Y(r,0) < ¥(0).

Hence, Y is a supersolution for equation (13), giving the result

1

0<Y(’I’,t)<m:x—_l)?

on —ow<r<o, t>0. (15a)

For 7, < 1, (15) shows that Y(r,¢)— 0 uniformly in r as {—>00. Hence, a necessary
condition for the growth in the concentrations of the reactants from initially small
values and hence for the initiation of travelling waves is Z; > 1 i.e.

=yt Yo <1 (150)

Furthermore, Y, = (3/2%,) sech? (3») is a fixed point for equation (13a) and hence
the solution with any initial function such that g(r) < ¥,(r) on |r| < o, will be bounded
above by Y (r), i.e.

O<Y(¢,t)<§:;—sech2(%r) for —o0<r<o, t>0. (16a)
1

In particular, since we are taking g(r) <1 on |r| < o, a necessary condition for

Y(r,t) to grow in ¢ (leading to the possible initiation of travelling waves) is that

3 2 (1
x> 50, sech? (30) (160)
for y, small.

It is worth noting that the above theory applies to all three cases, and that
‘threshold’ values of x; and y, necessary for the development of large time
behaviour, which is not just a return to the unreacted state, applies equally well to
the expanding case (u—7y > 0), as to the contracting and reduced cases (4 —7y < 0).

We also know that for z, large (formally by a rescaling of » and ¢) that equation
(13¢) reduces to a Fujita-type that has been studied extensively, see, for example, the
review article by Levine (1990). In this limiting case, the solution has a finite-time
pointwise blowup. This suggests that for sufficiently large values of x;, equation
(13a) will also have such a finite-time blowup leading to the large increase in Y
required to initiate the formation of waves. Note that, from a priori bound (6¢), the
y cannot grow indefinitely in the cases p—7y < 0.

(d) Solution for small o

Further insight into the mechanism by which the travelling waves are formed can
be gained by examining the solution of equations (2), (3) for small o. A consideration
of equations (2) and conditions (3a) suggests that the initial development occurs on
a short timescale of O(c%) and is confined to a lateral extent of O(o). Then on putting

p=rlo, T=t/c% (17)
Phil. Trans. R. Soc. Lond. A (1994)
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The initiation and propagation of travelling waves 395

and assuming that x; and y, are both of O(1) for the present, equations (2) and (3)
become

or 0%

P $+0‘2(ﬂz—xy2), (18a)
oy 02

5% = #+ a?(xy®—y), (18b)
0z 0%

=gt (18¢)

subject to the conditions

- _ _ [%9(), ol <1, _
r=2x, 2=0, y—{o, bl > 1, at t=0, (19a)
x—x, y—0, z—0 as [|p|— 0. (190)

At leading order, z, y and z all satisfy diffusion equations with solutions

x = x, (20a)
2=0, (20)
— Yo e —sr ,—isp d 20

where g(s) is the Fourier transform of g(p). From (20c¢) we find that

~_ Yo = £ —p*/ar
Y 24/ (nT) g(27) ¢ 1)
as T—>0o0, uniformly in p.

The perturbations,  and z to the leading order solutions for x and z given by (204,
b) are both O(c®) and satisfy the equations

oxr 0z
E_‘);=a)—2-—xly2, (22a)
0z 0%
e a—pz'i'?/, (22b)

with y as given by (20¢), (21). The solution of equation (22) is given simply by
2p,7) = 1Y(p,7) (22¢)

so that z is of O(o27/%) uniformly in p for 7 large.

If we now return to equation (185) we see that the reaction terms neglected are to
leading order, for 7 large, of O(c?77"/?) whereas the terms retained are of O(77%/2).
These will become comparable and the reaction start to make a significant
contribution to the behaviour of the solution when 7 is of O(¢7?), with then p of
O(07') and y and z both being small, of O(c). This suggests that the next stage in the
time development occurs when ¢ and r are both of O(1), and with

r=x,+0X, y=0Y, z=0Z (23a)
Phil. Trans. R. Soc. Lond. A (1994)
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396 S. M. Collier, J. H. Merkin and S. K. Scott
Kquations (2) become
X 00X
E=—aﬁ+,uZ—xlaY, (23b)
2
aa—lz=aaT{+xIGY2—Y, (23¢)
Z O*Z
§=6}?+Y*’}/Z. (23d)

For z; of O(1) equation (23¢) reduces to equation (12a) as o — 0, and has a solution,
Y(r,t), given by (12b), such that Y(r,¢) -0 uniformly in r as ¢ >00. Then, equations
(23b) and (23c¢) show that, to leading order in o, both X(r,¢)—>0 and Z(r,¢)~>0
uniformly in 7 as 0.

The situation is now clear for a small initial input of autocatalyst B, characterized
by o < 1, x;,y, of O(1). There is an initial diffusive spread of B on the short, O(o?),
timescale, with the concentration of 4 remaining constant, and a small increase (of
O(c)) from an initially zero value in the concentration of C. On the longer, O(1),
timescale, the consuming reaction (1c¢) then becomes dominant and removes all the
autocatalyst B before it can be produced via steps (1a, b). The concentrations of
reactants A and C then return to their initial unreacted states through diffusion. In
this case no travelling waves are initiated.

This situation will not apply when we make the initial input of B larger, either by
increasing z, or by increasing y,. The first case follows directly from equation (23¢).
For with z, large, of O(o™1), this equation now is in the form given by equation (13a),
the behaviour of which has already been discussed.

The second case arises when y, is of O(0™'), then with y, = 7,/0, the total input of
autocatalyst B is

o 1

?/of g(r) dr = ?70] 9(p) dp, (24a)

-0 -1
which remains of O(1). This suggests putting y = ¢7'Y and with z = z,, of O(1), to
leading order equation (18b) becomes

Y oY

%—T=%—’55+x1Y2—0'Y. (24b)
The leading order solution to this equation for o small has a finite-time blowup
(Levine 1990), which suggests the formation of waves in this case on the shorter O(c?)
timescale.

We have established various necessary conditions for the initiation of travelling
waves (more strictly, the conditions for the growth in reactant concentrations from
initially small inputs required for the formation of such waves). For y, small, i.e.
small inputs of autocatalyst B, we require the initial concentration of reactant A to
be large, i.e. of O(y;"), as given by inequalities (15b), (165). The reason for this can
be seen from reaction scheme (1). For growth in the concentration of B we require
the autocatalytic production rate via step (1) to be at least comparable with the
decay step (1c), i.e. ky x,y3 ~ kyy, and hence x, to be of O(y,").

For x, and y, both of O(1), we have established a necessary condition (10) for the
initiation of waves only in the case (#—7) <0, with the concentrations of the
reactants remaining bounded throughout. For the case (4—7y) > 0 we have been

Phil. Trans. R. Soc. Lond. A (1994)
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The initiation and propagation of travelling waves 397

unable to obtain such a bound, only a limit on the growth rate of the reactant
concentrations being found. The question as to whether permanent-form travelling
waves are initiated in this case, or whether the concentrations grow indefinitely in
time (as they could in the well-stirred system, part I) is not clear at this stage.

For small inputs characterized by the parameter o we again need large initial
concentrations of A or B for the possibility of wave formation. More specifically, we
need either , or y, (or both) to be of O(c™).

To proceed further, and to see if, and under what conditions, travelling waves can
be initiated, we need to solve equations (2), (3) numerically.

3. Numerical solutions of the initial-value problem

The method we used to solve the initial-value problem (2, 3) numerically was
essentially that described in Merkin & Needham (1989), with only minor changes
being needed to accommodate the third equation. We took representative values of
1 and vy to illustrate the various cases that can arise in the behaviour of the well-
stirred system. Throughout we took o = 1.

We started by examining the threshold values necessary for the initiation of non-
trivial large time behaviour. The work in the previous section gives estimates for the
lower bounds (10) and (16b), (which is, for o = 1, , y, = 1.180) on z, and y, for such
behaviour. In all the cases considered which were below these bounds we found that,
as expected, the solution returned to its unreacted state, quickly for y and z, and
more slowly (by diffusion) for . We also found that for values of «, and y, which were
a little greater than the suggested lower bounds, again the solution returned to its
unreacted state for ¢ large. This suggests that the actual lower bounds on x; and y,
could well be somewhat greater than those estimated above.

(@) Reduced case (u =)

Here we can identify «,, the initial concentration of A, with the initial value ¢, in
the well-stirred system. The reason for this will become apparent when we come to
consider the equations for the permanent-form travelling waves. However, we can
note in passing that the sum £ = ¥+ y +z satisfies the diffusion equation in this case,
with then & ~ x, + O(t7'/2) as t 00 uniformly in r and the correspondence between x,
and the total initial concentration c, in the well-stirred system becomes clear. We
then have the behaviour for the steady state

= g = =+ 1P, = (250)
2/(/%1)@1<W“)Wf*”)‘”+w(2:ﬂ)_1), unstable node,
(/t+1)W/(L2+ﬂ)—1)+w(2+1m_1)<x1<V2(1—_/Am+w1ﬂ~ﬂ)’ unstable focus,
o V) WA,
prHvErm+l) ! <2, stable node.

I (V(E2+p)+1)
Phil. Trans. R. Soc. Lond. A (1994)
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)]
6 - F 6-
4 4-
x y
2 1 2
(@)
0 8 160 240 0 80 160 240
r r

Figure 1. Concentration profiles for (2) # and (b) y, at large time, showing the emergence of a
reaction-diffusion travelling wave, obtained from a numerical solution of the initial value problem
(2), (3) for the reduced case y =y =0.12, 2, = 6.3.

The other non-trivial steady state, corresponding to the other root in (25a) is always
a saddle. These two steady states exist only for

4(p+1)
x2 > PR or u> Py (25b)
The trivial state
x=z, y=0 (25¢)

is always a stable node for all parameter values.

We fixed the value of y at 4 = 0.12 and took y, = 1.0 throughout, and obtained

numerical solutions for increasing values of x,, each in the ranges:
(i) 0 <x, <6.11010, only stationary state (25¢) exists and for x;, > 6.11010,
stationary state (25a) is
(i) 6.11010 <z, < 6.44098, unstable node,
(iii) 6.44098 < x, < 9.35006, unstable focus
(iv) 9.35006 < x, < 9.82145, unstable focus surrounded by a stable limit cycle
(v) 9.82145 < x, <23.33003, stable focus,

(vi) 23.33003 < x,, stable node.

We started by taking values of #; < 6.11010 and for all the initial inputs y, tried,
we found that no travelling wave was generated, with the concentration y rapidly
decreasing to zero with the concentration x returning more slowly (by diffusion) to
its original unreacted state. This behaviour was also observed in both the contracting
and expanding cases.

We then took values of x,; in each of the different steady state behaviour regions
(ii)~(vi) given above. The situation is illustrated in figures 1-3, where we give
concentration profiles « and y at large values of ¢, taken to be sufficiently large for
the travelling wave structure to have emerged fully in the numerical results.

In figure 1 we give results for z; = 6.3 (v, = 2.38243, y, = 0.41974, unstable node).
Here a definite travelling wave structure has emerged with a drop in the
concentration « to (almost) zero before it rises again at the rear of the wave to the
constant value x,. The trough in the concentration x corresponds to a pulse in an
otherwise (almost) zero concentration y.
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Figure 2. Concentration profiles for (a) « and (b) y, at large time, showing the emergence of a

reaction-diffusion travelling wave, obtained from a numerical solution of the initial value problem
(2), (3) for the reduced case g =7y = 0.12, z, = 9.3667.
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Figure 3. Concentration profiles for (a) x and (b) y, at large time, showing the emergence of a
reaction-diffusion travelling wave, obtained from a numerical solution of the initial value problem
(2), (3) for the reduced case 4 =7y = 0.12, z, = 15.0.

A similar situation arises for x;, = 7.0 (x, = 1.79217, y, = 0.557 98, unstable focus)
with the concentration profiles of « and y for large times being almost identical to
those shown in figure 1. The main difference between these two cases is that now the
rise in « at the rear of the trough takes place over a slightly larger lengthscale. In
both cases we found that the propagating wavefronts had a constant speed (at least
to within the accuracy of the numerical scheme) for sufficiently large ¢.

For z, = 9.36666 (figure 2), a stable limit cycle exists in the well-stirred system and
this is manifested by the emergence of a regular wave train in both x and y at the rear
of the propagating reaction-diffusion front. Again we found that for sufficiently large
times the reaction-diffusion front travelled with a constant speed and that each of
the waves in the wave train at the rear of the propagating front also travelled with
the same constant speed, once they had reached their asymptotic form. The situation
at large times is then that the reaction-diffusion front propagates with a uniform
speed followed by a regular wave train, stationary relative to the front. There is a
region near the origin where waves are continually being generated; these grow in
amplitude and period and propagate forwards to join the wave train at its rear. We
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Figure 4. Concentration profiles for (a) x and (b) y, at large time, showing the emergence of a
reaction-diffusion travelling wave, obtained from a numerical solution of the initial value problem
(2), (3) for the contracting case y = 0.12, y = 0.15, x, = 9.3667.

also compared the amplitude and period (adjusted by the constant wave speed) of
the waves in this wave train and they were found to agree with the corresponding
amplitude and period of the time-traces in the well-stirred system.

For 2, = 15.0 (x, = 0.60543, y, = 1.53745, stable focus), shown in figure 3 and for
2, =27.0 (x,=0.35022, y, = 2.85533, stable node) where the large time con-
centration profiles for x and y (not shown) are very similar to those shown in figure
3, the situation is different. Here a constant velocity travelling wave emerges and
there is still a rapid fall in the concentration x in the wave with a corresponding rapid
rise in the concentration y. However, at the rear of the wave,  and y now approach
their (stable) non-trivial stationary states, as given by (25a), and do not return to
their initial concentrations.

An interesting feature of these results is that the formation of a constant velocity
travelling wave for large times requires the existence of the non-trivial stationary
state (25a) even in those cases where this is unstable and the concentrations at the
rear of the wave returns to their unreacted states. This results in the propagation of
a dip in concentration of reactant A in an otherwise uniform distribution with a
corresponding pulse in the concentration of the autocatalyst B.

(b) Contracting case (u < 7y)

Here we again took 4 = 0.12 and now put y = 0.15, and considered three cases for
x,, corresponding in the previous (reduced) case to unstable and stable stationary
states, and to the existence of stable limit cycles. The results are shown in figures 4
and 5.

We started by considering the case x; = 7.0 and we found that the large time
concentration profiles are very similar to those for the reduced case. It is observed
that again a constant velocity propagating reaction-diffusion front is formed in
which there is a drop in the concentration x to (almost) zero, before a rise to a
constant non-zero value at the rear of the wave. This value is less than the original
concentration z,. The concentration y behaves as in the reduced case, being (almost)
zero everywhere apart from in the pulse which again corresponds to the trough in the
concentration x.

In figure 4, we give results for x;, = 9.36666 to compare with figure 2. Again wave-
like behaviour is produced at the rear of the wave, as in the reduced case. The
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Figure 5. Concentration profiles for (a)  and (b) y, at large time, showing the emergence of a
reaction-diffusion travelling wave, obtained from a numerical solution of the initial value problem
(2), (3) for the contracting case y = 0.12, y = 0.15, x; = 15.0.
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Figure 6. Concentration profiles for (a) x and (b) y, at large time, showing the emergence of a
reaction-diffusion travelling wave, obtained from a numerical solution of the initial value problem
(2), (3) for the expanding case, x = 0.12, y = 0.09, x, = 7.0.

difference between the two cases is that now a regular wave train is not seen, with
the oscillatory response dying out at large times.

In figure 5, we show results for z; = 15.0 (to compare with figure 3). The behaviour
of the concentrations « and y is similar to that for the reduced case, but now x and
y do not both approach non-zero stationary states at the rear of the wave but the
concentration y falls slowly and uniformly to zero, producing a pulse-like wave form.
The concentration x approaches a small but non-zero value at the rear of the wave.

(¢) Expanding case (1> y)

For this case we again kept u = 0.12, but now we took y = 0.09, and considered the
three different cases described in §3b above.

In figure 6, for x; = 7.0, there is again a constant velocity propagating front, but
now the loss of the stationary state at the rear of the wave corresponds to a slow (and
again almost uniform) increase in the concentration x with the concentration y
remaining zero except in the pulse which corresponds to the trough in the
concentration x.
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Figure 7. Concentration profiles for (a) « and (b) y, at large time, showing the emergence of a
reaction-diffusion travelling wave, obtained from a numerical solution of the initial value problem
(2), (3) for the expanding case u = 0.12, y = 0.09, z, = 9.3667.

In figure 7, we show results for x; = 9.36666 (to compare with figure 2). Again we
observe wave-like at the rear of the propagating front, but these eventually die out
in both concentrations x and y. Finally we considered the case x; = 15.0. The
behaviour here is very much as in the contracting case, the stationary state (25a) is
not attained.

In both the expanding and contracting case a well-defined wave-front structure
emerges at large times, in which there is a sharp drop (to almost zero) in the
concentration x and a sharp rise in the concentration y. It is in the behaviour at the
rear of the wave, where the only possible stationary state is the trivial one (25¢), that
differences between the two cases are seen. In the contracting case, x rises to a
constant non-zero value, less than x,, the concentration ahead of the wave, while y
falls to (and remains at) zero. In the expanding case there are two possibilities
depending on the value of z,. Either, concentration x increases almost uniformly with
time, with y falling to (and remaining at) zero (e.g. for z; = 7.0). Alternatively,
concentration x falls uniformly to zero, while concentration y increases uniformly
with time (e.g. for x; = 15.0).

4. Permanent form travelling waves

In this section we discuss the behaviour of the permanent form travelling wave
which we have seen above can arise in the solution of the initial-value problem (2),
(3) for large time. We introduce a travelling coordinate s = r—uv, ¢, where v, is the
(constant) wave speed of the propagating wave, v, > 0. Equations (2a—c) then
become

d2 d
d—;ﬂod—iwz—xyz =0, (26a)
d? d
_—dsz+vod—z+xy2—y =0, (26b)
d% dz
——d82+v0&+y—'yz=0, (26¢)
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subject to the boundary conditions that
x—x, y—0, 2—0 as s—© (27)

and that the conditions are uniform as s—— o0 at the rear of the wave.

Thus we require a non-trivial non-negative solution (i.e. x % z,, y, z £ 0) with
v, > 0 of equations (26) satisfying the appropriate boundary conditions. We note that
this leads directly to the requirement that y(s) >0 on —o0 < s <00, established
using essentially the same method (for an equivalent result) given by Billingham &
Needham (1991 a) and Merkin ef al. (1993). Now assume that z is zero at a finite value
8y of s, 1.e. 2(s,) = 0. Then, since z(s) is non-negative, z’(s,) = 0 and z must have a local
minimum at s,. However, from equation (26¢), 2”(s,) = —y(s,) < 0, which gives a
contradiction. Hence z(s) > 0 in —o0 < s <00. By using this result, and a similar
argument, we can establish from equation (26a) that x(s) >0 on —o0 < s <00,
giving the result

x>0, y>0, 2>0 on —o0 <s§<00. (28)

We now examine the condition to be applied at the rear of the wave in more detail.
An examination of equations (26) shows that, in general, we must have

r—2, Yy—0, z—0 as s— —o0, (29)
where z, is a constant and will depend on the parameters of the system. If we now
apply

00
f ...ds to (26b,c)

—00

we obtain, using (27) and (29)

0 0 0
J xy? ds = f yds= yJ z ds. (30a)
—00 —00 —00

Applying the same to equation (26a), and using (29) and (30a), then gives

00

V(1 — X) = (V—ﬂ)J z ds. (300)

~a
Now via (28) the integral in (30b) is positive and hence:

x, <, for the contracting case, u <v,

xz, > x, for the expanding case, u > 1y.
(the former case was observed in the numerical results). The reduced case, y =y,
needs further consideration and this is what we examine next.

(@) Reduced case, p =17y

(i) Boundary conditions

On adding equations (26) we find that § = x4+ y+2 satisfies the equation, with
~H=7

& +v,& =0, (31a)
E—x, as s— o0, £ bounded as s— —c0. (310)

The solution of (31a, b) is simply
£=ux,, (31¢)

Phil. Trans. R. Soc. Lond. A (1994)
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with (26a, b) then becoming
&ty +p(x,—x—y)—ay? =0, (32a)
Y +oy +ayt—y =0, (32b)
subject to boundary conditions (27) and either
x—x, y—0 as s— —o© (33a)
or *—ox, Y—Y, as S§— — 00, (330)

where (z, y,) is given by (25a). It is condition (31¢) that enables us to identify x, with
the initial value ¢, in the well-stirred system (part I), as noted earlier, thus leading
to stationary states (25a).

Boundary condition (33a) arises naturally from (30b). The extra boundary
condition (33b) arises from the reduction of the order of the system, and is not in
violation of (30) as the infinite integrals involved in this relation are no longer
convergent.

The boundary conditions satisfied at the rear of the wave require further
discussion. On putting x = ,+ X,y = y,+ Y, where X and Y are small as s >— 00, we
obtain linear equations for X and Y which have a solution in the form

X=4¢e"%, Y=Be", (34a)
where the eigenvalue A is given by the quartic equation
A4 20, B2+ (024 22, ys— 1 — p—y2) A2
+002x ys— 1 —p—yd) A+ yi(1 +p) + u— 2y, = 0. (34D)
We require equation (34b) to have roots which are positive (or have positive real
part). It is straightforward to show that, when (z,¥,) is given by the trivial state
(25¢), equation (34b) has the required solutions
A =5V (5+4)—v,), 3V (05 +4)—v,) (35)
for all values of u.
When (z,, y,) is given by (25a), equation (34b) can be expressed in the form
A 420 3+ (Tr+02) A2+ v, Tr A+ 4 =0, (36)

where Tr and 4 are the trace and determinant respectively of the jacobian of the well-
stirred system corresponding to the stationary state (25a). These are given in part
1, where it was shown that 4 > 0 for all values of # and x, for which stationary state
(25a) exists. Moreover, it is clear that equation (36) cannot have solutions of the
required form when Tr > 0, i.e. when stationary state (25a) is unstable. Hence, a
necessary condition for this stationary state to be attained at the rear of the wave
is that Tr <0, i.e. (25a) is temporally stable. Thus the only condition that can be
satisfied at the rear of the wave when (25a) is unstable is the trivial state (25c¢).

(ii) General properties
We now establish properties of the solutions of equations (26) subject to boundary
conditions (29) and (33a) or (33b). We have already noted in (28) that x > 0, y > 0
on —o0 < § <o and it is straightforward to deduce that
r<wx, yYy<z, x+ty<z, on —00 <s8<00. (37)
Phil. Trans. R. Soc. Lond. A (1994)
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To establish the first of these inequalities, we note first that x,,y, < x; and hence,
if there is an interval of s over which « > z, then x will have at least one local
maximum on this interval. Suppose that z attains such a local maximum at
s = 8, (say), with then 2'(s;) = 0, 2”(s;) < 0, 2(s;) > x,. However, from equation (32a)

x7(sy) = 2(81) Y(81)® + p(x(sy) + () — ;) > 0 (38)

by (28) and the hypothesis. This is a contradiction and we can conclude that x < z,
on —o0 < §<00.
On putting ¢ = x+y and adding equations (32a, b) we obtain

Y oY+ px =) —y = 0. (39)

Noting that x,+ys < z;, a similar argument then shows that iy < 2; on — 00 < s <00.
The inequality y < x; then follows directly.

We can obtain a bound on the maximum value of y(s) when boundary conditions
(27) and (33a) apply, by first noting that y will have at least one local maximum on
— 00 < § <00. Suppose one such local maximum occurs at s = s, (say), at which point
y'(8y) =0, ¥'(s,) <0, y(8,) = ¥,,- Then, from equation (32b),

Y (85) = Y (1 =2(85) Yu) < O (40a)
from which it follows that
2(sy) 2 1/Y - (400)
"Then, from inequality (37), we have

1
Ly = x(82)+ym > y_+ym' (400)

m

Rearranging (40¢) gives the condition that
Ym S 3@+ V(@] —4)). (41)

Expression (41) requires z, > 2, and hence a necessary condition for the existence of
a solution of equations (32) is that z; > 2, which is the necessary condition for the
existence of stationary state (25¢) and suggests, together with the evidence from the
numerical solutions, that non-trivial solutions of equations (32) exist only when
stationary state (25a) exists.

(iii) Solution for x, large

Further information about the nature of the solution of equations (32) can be
obtained by considering the solution valid for z, large. To start we put

x=u0,X, y=u,Y, v,=x,0, =18, (42a)

with equations (32) becoming

X' +oX' — XY+ pa?(1—X—-Y) =0, (420b)
Y +0Y' +XY?—22Y =0, (42¢)

satisfying
X—1, Y—>0 as §— o0, (42d)

where primes denote differentiation with respect to 8. The boundary conditions at the
rear of the wave are relaxed at this stage.

Phil. Trans. R. Soc. Lond. A (1994)
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Equations (425, ¢) suggest looking for a solution valid for z, large by expanding
X5 2,) = X&) +22 X,8) + ...,
Y(s52,) = Y@ +27° Y,(8)+ .., (43)
U="0y+a>v,+....

At leading order we obtain the equations

Xo+7,X0—X, Ye =0, (44 a)
Yo+9, Yo+ X, Y: =0, (44 )
with X,—1, Y,—0 as §— 0. (44c)

By adding equations (44a,b) and using boundary condition (44¢) and the
requirement that the solution not be exponentially large as §—>—o0 (to be able to
match to further regions at the rear of the wave), we obtain

Xo+Y, =1 (450a)
Equations (44, b) then have the solution

LI QN . 45b

0_ﬁﬁ, 0T 1 ;e UO—W7 ( )

which is the solution for the cubic-Fisher problem (Saul & Showalter 1984 ; Gray et
al. 1990).

The particular choice of solution given by (45b) requires some comment. It has
been shown by Billingham & Needham (19915) that equations (44) with condition
(45a) have a solution for all ¥, > 1/4/2. However, all solutions for 7, > 1/4/2 have
only algebraic decay at the front of the wave with the solution given by (45b) being
the only one with exponential decay as §—>00. Now our original initial-value problem
(2), (3) has initial data for y with compact support and, to match onto this form at
the front of the wave, the decay rate in y must be exponential there, leading to
solution (455).

Before proceeding to the higher order terms, we note that this leading order
solution has a non-uniformity, since (45b) implies that x>0, y >z, as §—+—o00 and
boundary conditions (33) are not satisfied.

At O(x;®) we obtain, using (45a),

X[ 47,X;-2X, Y, ¥, - V3X, = -7, X, (46a)
Y49, Y1 +2X Y, Y+ Y3 X, = -0, Y+ Y, (46b)
subject to
X,—0, Y,—>0 as §— 0. (46¢)
By adding equations (46a, b) and using (45a) we find that i, = X, + Y, satisfies
Vi+o,¢r, =1, 47 a)
The required solution is, on using (45b),
1 e .
Y= po [7,5—log (14 €"%)(1+e %)]. (47b)
0

Phil. Trans. R. Soc. Lond. A (1994)
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Solution (47 b) show that
1 _ -
gﬁ1~;j_—2—(wos—1)+0(e'7°s) as §— —00. (47¢)
0

A further consideration of equations (46a, b) then shows that
i ~5(@5—1)+..., a8 §——© (48)

with X, being exponentially small as §—>— 0.
Before leaving this thin region at the front of the wave, where s is of O(z;*), we note
that equation (46a) becomes

X747, X7 —(1—-Xo)(1—-3X,) X, =2X,(1—X,) ¢, — 7, X, (49a)

with ¢, given by (47b). Now equation (49a) has a complementary function X;, and
to obtain a solution of this equation which has X;,—>0 as §—>00 and is not
exponentially large as §—— 0o, we require that the consistency condition

(e o)
f (7, X, —2X, (1 —X,) ;) X % d5 = 0 (490)
—00

be satisfied. This condition determines #,, and, after performing the necessary
integrations, we find that
v, = —3/203. (49¢)

Hence the asymptotic form of the wave speed is

x 6
v":v]é(l—o—c?-'_"') as &, — 0. (49d)

Finally, we note that the solution up to O(x;?) does not involve the parameter . This
first appears in the solution at O(x;*) where we find that

X, ~ as §— —oo. (50)

Yo

From (42a), (45b) and (48) we have that

y~x1(1+§x1—1+...) (51a)
0

at the rear of this region at the front of the wave. Equation (51a) suggests that a
further region is required in which s is of O(z,). To proceed we start by assuming that
the parameter u is of O(1), with (50), (51a) and (32a) then suggesting that we put

x=a7'U, y=aV, {=2's ({(<0). (610d)

On applying (51b), equations (32) become
w(1—V)=UVE+ 272U — pU) + 272 U” = 0, (52a)
oV +UVE—=V+a 2V =0, (52b)

Phil. Trans. R. Soc. Lond. A (1994)
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where primes now denote differentiation with respect to {. The matching conditions
are that
U~ —ug/m,, (52¢)
V~148/7,+ ..., (62d)
as {—0".

Equations (52) suggest looking for a solution by expanding in powers of ;*. It is
straightforward to show that the leading order terms ({j, J;) are given by

0 _ Mpt D1 —exp((u+1) §/7,)]

53
texp(ut DG (534)
1 _
As {— —o0, U(,——>'Li+—1, V(,—>—'u—, so that
JZ pt1
—_ -1 ’LL__F_I —_— ’u
r—a; ( . ) y xl(ﬁl) (54)

at the rear of the wave. We can see that (54) is the asymptotic form of the non-trivial
stationary state (25a) for large x; and hence, in this case it is this stationary state
which is attained at the rear of the wave.

The structure of the permanent-form travelling wave for x; large and p of O(1) is
now clear. There is a thin region at the front of the wave, of thickness O(«x;?), in which
the concentration of A decreases and that of B increases, reaching a maximum value
of O(x,). There is then a further, much thicker region, of thickness O(«,) in which the
concentration of A remains small, of O(x;*) while the concentration of B decreases
but still remains large, of O(x,), with the non-trivial stationary state (25a) being
achieved at the rear of the wave.

We have shown in part I that, when «, is large and u is of O(1), stationary state
(25a) is stable. However, this is not the case when x is small, and in particular there
is a Hopf bifurcation (corresponding to a change in stability of (25a)) when u =
xt+ O(x;?). This suggests that we also need to consider the case when u is of O(z;?).
To do this we put

o= px (55a)
where now ji is of O(1). The solution in the region at the front of the wave, as given
by (45a, b), (47b) and(48) is not affected by this (though (50) will be).

We still require a region in which s is of O(z,), and in which transformation (51b)
applies, with the modification that now

x=a72U. (55b)

Equations (32) become, on applying (51b) and (55)
EA=V)=UV?+ 270U — e PU+ 272 U” = 0, (b6a)
oV —=V+a UV + 22V = 0. (56b)

The matching conditions are still given by (52¢, d), with @ replacing u in (52¢). The
leading order terms (U, V) are now given by

Uy = i(1 —e8/%) 20, (57a)
¥, = e, (57b)
Phil. Trans. R. Soc. Lond. A (1994)
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The initiation and propagation of travelling waves 409

Equation (57) shows that I, -0, whereas U, becomes exponentially large as {—>00. To
obtain further information about this non-uniformity we need to consider (U}, V}), the
terms of O(z;'). We find that

V, = ﬁ(l +_£ eé/) (58a)
Yo
U, = — % e %% (1 +17£ eWo) (26 %% —1). (58b)
0
From (58) we have that
a e_g/ﬁo
x~ e_%/%(l —2p —+ ), (59a)
1
y~Ft., (59b)

as {——o00. (59) suggests that we require a further region in which
¢{=1,log (ﬂ)+§‘ (60)
%y

and in which we leave x and y unscaled. Equations (32) then become, at leading
order,
Ty’ +pp—ay® =0, (61a)

Ty +ayt—y =0, (61b)

where primes now denote differentiation with respect to £. The matching condition
is, from (59)

e—2§/170
xXx ~

(1—2e %4 ..), y~ gedP(1+e %+ ). (61c)

Equations (61) have been discussed in some detail by Merkin ef al. (1987) where it
was shown that

x—»lbl_t, y—jg as {——oo for g>1. (62a)

(62a) corresponds to the non-trivial state (25a) in the limit as @, o0, @ = px; of
O(1). Thus for 7 > 1, i.e. u > a7}, stationary state (25a) is stable and this is the
stationary state attained at the rear of the wave. For u in the range 1 > 7 > pu, =
0.90032, the solution of equations (61) approaches a stable limit cycle as {—— o0
(through a Hopf bifurcation at 7 = 1). This corresponds to the appearance of a
travelling wave train at the rear of the reaction-diffusion front. For 7 < u,,

x~l17/z§+..., y—0 as & —o0 (620)
0

(with y being exponentially small for  large).
A further region is then required, in which y is exponentially small and in which

x=x,U0, s=7u,x, log (2u*/x,)+z}o. (63)
Phil. Trans. R. Soc. Lond. A (1994)
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410 S. M. Collier, J. H. Merkin and S. K. Scott
By using (63) equation (32a) becomes

50 +g(1—0)+ 252 0" = 0 (64a)

(where primes denote differentiation with respect to o). The matching condition on

U is, from (62b)

U~—_?7—’u0'+... as o—0". (64 b)
0
The required solution for the leading order term [, in an expansion in inverse powers
of x, is
U, = 1 —e#v (64c¢)
and shows that U, 1, i.e. x—>x,, at the rear of the wave. Thus, in the case when
B <, i.e. p<p,ai* and the non-trivial stationary state (25a) is unstable and

there is no further stable attractor in the system, it is the trivial stationary state, i.e.
x = x,, ¥ = 0, which is approached at the rear of the wave.

(b) Expanding (n > ) and contracting (u < ) cases
(i) General properties
We have already seen that the only boundary conditions that can be satisfied in
these cases are (27) and (29). We start by obtaining conditions on the total
concentration { = x+y+=z. By adding equations (26) and integrating, we find that

d T
d—i ===y e J_w &~ 2(s) d. (65)

Now, from (28), § must be of one sign, negative for g > y (expanding case) and
positive for u <y (contracting case). Thus the total concentration increases
monotonically through the wave in the expanding case and decreasing monotonically
through the wave in the contracting case.

Furthermore (65) shows that on —o0 < s <00,

2, <x+y+z<wz, inthe expanding case, (66a)

x, <x+y+z<x, inthe contracting case. (66b)

Then, using (28), z, y and z individually satisfy the right-hand inequalities in (66),

ie.

x, in the expanding case, (67a)

x; in the contracting case. (67b)

Since y—~0 as |s|—>00 and (29) holds, y achieves its maximum on —o0 < s <00,

Suppose that y has a maximum y,, at s = ¢, then ¥'(¢,) = 0, y”({,) < 0, with equation
(26b) giving

Y'(t) = Yu(l =y x(t)) <O0. (68a)

Hence, z(t,) > 1/y,, and since for the contracting case xz(t;)+vy,, +2(f,) <z, and
z(t;) > 0, we obtain the same bound on y,,, namely

Ym S 3@ +V (21— 4)) (680)

Phil. Trans. R. Soc. Lond. A (1994)
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The initiation and propagation of travelling waves 411

as for the reduced case, noting that this again requires x; > 2. For the expanding
case, we now have x(t,) +y,, +2(¢,) <z, (and 2(f,) = 0). This gives the bound

Ym < 3+ (27— 4)) ~ (68¢)

for the expanding case. Note that this requires x, > 2 which suggests (since here
x, < z,) a higher value of x, is required for the existence of a solution of equations
(26) in this case.

Also, since z—0 as |s]>00, z achieves its maximum z,, (say) at x =1, on —o0 <
s <00, where 2'(t,) = 0, 2”(t,) < 0. Equation (26¢) then gives

zl/(tz) = ')’Zm_?/(tz) <0, (69@)
which gives yz,, < y(t,) < y,,, and hence
1
I S Q;(xﬁ v (xi—4)) (690)
for the contracting case and
1
Zm <§);(96‘e+\/(96‘?—4)) (69¢)

for the expanding case. Conditions (69, ¢) give stronger inequalities on z,, than (67)
for y > 1, whereas for y < 1, they give a stronger result only when 2} < 1 [y(1—7).

(i) Solution for large x,
Finally, we obtain a solution of equations (26) valid for x, large. We consider only

the case when g and y are both of O(1). We start, as in the reduced case, in a region
of thickness O(z;!) at the front of the wave, where we scale

r=x,X, y=x,Y, z=x,Z, §=2x,8 v,=2x,7. (70)

When (70) is substituted into equations (26) and a solution sought by expanding in
powers of x;? the leading order terms in X and Y are as given by (45b) for the reduced
case. Equation (26¢) gives for the leading order term Z,

Zg 40,2y =0 (71a)
subject to Zy—0 as §— 0 (71b)

and Z, not exponentially large as §— — 00. The solution is

Z, = 0. (71¢)
At O(x;?), we obtain, from equation (26¢)
24,2, + Y, = 0, (12a)
with solution 1
Z, = %[(1 +e7%%) log (1 + €%%) —7, 5] (72b)

0
which shows that Z, -0 as §—+o00, while
1
Zy ~ = (=T 85+1) (72¢)
UH
as §—>—00.

Phil. Trans. R. Soc. Lond. A (1994)
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The behaviour of X, and Y] as §—— o0 is, as in the reduced case, given by (48). This
then suggests a further region, of thickness O(x,) is required in which we put

x=a'U, y=u,V, 2=, W, {=ua7ls, (73)
with equations (26) giving
uW—=UVE+a 2o, U +a* U =0, (74 a)
TV +UVE=V+a 2V =0, (74b)
oW +V—yW+a2W =0 (T4¢)

(where primes now denote differentiafion with respect to {). Equations (74) are to be
solved subject to the matching conditions that
- _ .8 _—¢ _
U=0%), V=14+=2+4+..., W=—2+..., as (—0". (75)

Yo Yo

A solution of equations (74) is sought by expanding in powers of 2, the leading
order terms can be shown, after some algebra, to be

1

Vy=————
’ 770(/\1_/\2)

[(1 =5 Ay) €M+ (3, A, — 1) €], (76a)

W [eM—e], (76b)

_ 1
770()*1_/\2)

Uy (A — A,)(eMf —elif))
[(Ty Ay —1) e84 (1 =7, Ay) eME]?’

U, = (76¢)

where

1 2 _ 1 — —)?
/\1=2—?70[1+7+\/((1—7) +4u)), A2—250[1+7 V((1=7y)* +4u)].

Note that A; and A, are both real, A, > 0 and A, < A,.

We now have two cases to consider depending on whether 4 <y or u > y. In the
first case (4 <7y), A, >0 and then V,, W,—~0 as {——oo0, while [,—oc0, more
specifically

U ~ Ho(A; — Ay) oMot

0 (T A, —1)2 ) (77a)
V. ~ @A —1) el W _ e (77b)
0 Dy /\1_)‘2) ’ 0 770()(1_/\2)

as {—~—o0.

To continue, we examine the behaviour of the terms of O(z;2). We find that ¥, and
W, are both of O(e %), while U], is of O(e~3"¢) as {— — co0. This suggests that we require
a shift of origin in {, namely

-1
T2,

with then from (77) and (78) z, y and z all being of O(1) when  is of O(1).
Phil. Trans. R. Soc. Lond. A (1994)
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The initiation and propagation of travelling waves 413

Hence, for the contracting case (4 < y), we have a final region in which z, y and
z are unscaled, the wave speed is v, =x,/4/2 from (45b) and (70), and the
independent variable given by (78). This leads to the equations at leading order

Ty’ +pz—ay® =0, (79a)

Tyy +ay*—y =0, (79b)

Ty? +y—yz =0, (79¢)
i MO =R
with x @A, — 1) e ",

@A —1) ¢ et
~ e'es 2z~ — 79d
Y To(A;—Ay) Dp(A;—A,) { )

as {—o0.

Equations (79) are essentially the equations for the well-stirred system treated in
part I, where it was shown that y -0, z—0 while x - z,, an O(1) constant value, as
{——o00. The value of z, cannot be determined directly from this analysis, but can
be obtained by numerical integration for specific values of 4 and y. (This was also
illustrated in part I.) The main point to note, however, is that even though the
concentration of reactant 4 is large (of O(x;)) ahead of the wave, it falls to a much
smaller, O(1), value at the rear of the wave, while the concentrations of species B and
C both undergo large, O(x,), excursions in the reaction-diffusion wave. This can be
seen in the numerical results for the contracting case, particularly in figure 5.

For the expanding case, x4 > v, A, < 0 and now, [}, > 0, while ¥, >0c0 and W, -0 as
{—— o0, with their specific forms given by (77). The shift of origin given by (78) is
still required, with equations (79) resulting. Now these have to be solved in the
expanding case subject to large initial values of ¥ and z and a small initial value of
x. This problem was addressed specifically in part I. From part I it follows that «
undergoes a small increase before decaying to zero and both y and z decrease at first
before finally increasing as { - — 0o. This behaviour was seen in the numerical results
for the expanding case.

The wave structure for large 2, is now clear in both cases. In the contracting case
the concentrations y and z are pulse-like, being zero outside the wave, though
achieving large O(z,), maxima within the wave. The concentration x undergoes a
sharp fall from x; ahead of the wave to a small, O(x;?') value, before rising again to
a constant value, considerably smaller than its initial value. This structure is similar
to that for the reduced case when the stationary state (25a) is unstable, except that
there x approaches x, at the rear of the wave.

In the expanding case a permanent-form travelling wave, in which the
concentrations of all three chemical species approach constant values at the rear of
the wave and remain at these values after the wave has passed, is not observed. In
this case there is still a constant velocity propagating front structure in which « falls
sharply from its large value ahead of the front and in which y and z rise sharply to
O(x,) values. This frontal structure has a constant form for large time, being
dependent only on the travelling coordinate s. However, after this reaction-diffusion
front has passed the concentration x dies away to zero while concentrations y and z
increase, with this taking place on a long, O(x,), lengthscale.

The structure in the initial part of the wave is the same in all cases being given by
(44), (45) and is essentially the same as for the cubic-Fisher problem. This is to be

Phil. Trans. R. Soc. Lond. A (1994)
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expected from reaction scheme (1), where, for x;, large, it will be the cubic
autocatalytic reaction (1b) which will predominate. Only when the concentrations of
B and C have increased and that of A fallen in the wave will the effects of the other
reaction steps be felt.

5. Conclusions

The combined analyses of the previous paper (part I) and the preceding sections
have provided a detailed understanding of the reaction-diffusion events that can be
supported by the present model scheme. Three distinct types of permanent-form
travelling waves have been observed for the special, reduced case (with u = ). These
are: a pulse in which the system is disturbed locally from its trivial (unreacted) state
but recovers to that same state in the post-wave region; a front that connects the
trivial state to a different (reacted) steady state in the post-wave region and; a front
that then sets up a periodic wavetrain corresponding to local oscillations about the
(unstable) reacted state. The fronts in these case differ from classic Fisher—
Kolmogorov fronts in that they involve saddle-saddle rather than saddle-node
connections.

A necessary condition for the existence of a permanent-form, constant velocity
travelling wave solution of the reaction-diffusion system is the existence of the non-
trivial steady state solution (25a) of the corresponding well-stirred system. In terms
of the initial concentration of reactant A, which is the only intermediate present
ahead of the front initially, this requires z, > 2 and x > 4/(2%—4), as determined in
part I. The non-trivial state (25a) is not required to be stable. If this state is stable,
the system can settle uniformly and asymptotically onto this after the passage of the
front. If the non-trivial state is unstable, but surrounded by a stable limit cycle born
from a supercritical Hopf bifurcation in the corresponding well-stirred system, a
wavetrain is established behind the front. In the absence of a stable attractor in the
vicinity of the reacted, non-trivial state, there is a recovery wave as the system
returns to the unreacted state at sufficiently long time.

The conditions for a wavetrain are intimately linked to the conditions for the
existence of a stable limit cycle in the well-stirred case. Stable limit cycles are born
at points of supercritical Hopf bifurcations and are extinguished via homoclinic orbit
formation. The loci of these events in the y—c, parameter plane, equivalent to the
p—x, parameter plane here, have been determined in part I. For large z,, the
condition for the existence of wavetrain solutions can be obtained analytically, with
0.90032 < pz, < 1.

In addition to the existence of the non-trivial steady state, there is a critical
initiation condition on the concentration of the autocatalyst, y,, for the establishment
of permanent-form travelling waves. For large x;, a lower bound on this critical
initiation is y, > 7. In the same limit of large ,, the reaction-diffusion front has,
to leading order, the characteristics of a cubic Fisher—Kolmogorov front, with
dimensionless velocity v, = x;/4/2.

For the contracting case, with 4 < y but with x— small, similar permanent-form
travelling waves are established under similar conditions: both in terms of the
existence of (quasi) steady or oscillatory non-trivial states and of the critical
initiation condition. In this case, there is an additional region at long times in which
the system finally evolves to the only true steady state, with x—x,, ¥y ~0 and z— 0,
where x, < x, is some final concentration of reactant A (determined numerically from
the equations for the well-stirred system).

Phil. Trans. R. Soc. Lond. A (1994)
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In the expanding case, for which the total concentration £ = x+y+z, increases
monotonically in time, the behaviour at long times after the front either has x—oo
and y—0 or x—0 and y—o0, depending on the parameter values and the initial
conditions. Estimates for the maximum concentrations of ¥ and z achieved in the
reaction-diffusion front have been obtained for all three cases, equations (68) and
(69), in the limit of large ;.
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